
EECS 495: Randomized Algorithms Lecture 4
Min Cut

Reading: Text: Chapter 1, Chapter 10

Take-Aways

Concepts/Techniques:

• Las Vegas vs Monte Carlo

– Las Vegas, last week: RandQS – al-
ways correct, running time variable

– Monte Carlo, this week: Min-Cut –
always fast, solution may be incor-
rect

• Boosting correctness with repetition

• Reusing computation to reduce running
time

Application:

• Global min-cut

Simple Min-Cut Alg

Given an (undirected) graph G = (V, E),

Def: A multi-graph is a graph with multiple
edges between pairs of vertices.

Def: A cut in a graph is a set of edges whose
removal results in G being broken into two or
more connected components.

Def: A minimum cut is a cut of minimum
cardinality.

Question: How can we find a min-cut?

Algorithm: Use LP-duality: min-s-t-cut
equals max-s-t-flow, check all pairs of ver-
tices.

Question: Can you describe the implemen-
tation fo this algorithm?

It’s complicated!

Goal: Simple algorithm for min-cut.

Idea: Min cuts have few edges → contract
random edges and hope to avoid hitting cut.

Algorithm: Randomized Global Min-Cut
Repeat

• Pick edge (u, v) uniformly at random

• Merge (contract endpoints (u, v) to get
new meta-vertex zu,v

• Delete self-loop but keep multi-edges

Until only 2 meta-vertices remain.
Output remaining edges.

Example: K4 with one edge missing (square
plus diagonal)

Claim: Alg outputs global min-cut with
probability at least 1/

(
n
2

)
.

Proof: Consider min-cut F ⊆ E with |F | =
k.

Fact: Degree of any vertex is at least k.

1

[[
Else cut out vertex of smaller degree to
get smaller cut.

]]
Let Ei be event that edge contracted in step
i is not in min-cut.

[[So these are the GOOD events for us.]]

Question: Pr[¬E1] =?

• by randomization, k/|E|

• twice # edges is sum of degrees, so by
fact |E| ≥ nk/2

Therefore, Pr[¬E1] ≤ k/(nk/2) = 2/n.

Question: Pr[¬Ei|E1, . . . , Ei−1] =?

Idea: So long as we don’t contract an edge
from F , F is a min-cut in contracted graph[[

Because all cuts in contracted graph are
cuts in original graph.

]]
Let Gi be contracted graph in i’th step given
E1, . . . , Ei−1:

• number vertices is (n− i + 1)

• min-cut in Gi has size = k (assuming
E1, . . . , Ei−1)

• number of edges is ≥ (n− i + 1)k/2

Therefore, Pr[¬Ei|E1, . . . , Ei−1] ≤ 2/(n−i+1).

Recall conditional probability:

Def: The conditional probability of E1 given
E2 is

Pr[E1|E2] = Pr[E1 ∧ E2]/ Pr[E2]

Fact: For any set of (possibly dependent)
events, the above gives

Pr[∧n
i=1Ei] = Pr[E1] Pr[E2|E1] . . . Pr[En|∧n−1

i=1 Ei]

Question: What’s probability all good con-
tractions?

Pr[GOOD] = Pr[E1 ∧ . . . ∧ En−2]

= (1− Pr[¬E1])(1− Pr[¬E2|E1) . . .

≥ (1− 2

n
)(1− 2

n− 1
)(1− 2

n− 2
) . . . (1− 2

3
)

= (
n− 2

n
)(

n− 3

n− 1
)(

n− 4

n− 2
) . . . (

1

3
)

=
2 · 1

n · (n− 1)

=
1(
n
2

)
Question: How to improve correctness?

Idea: Run n2 times:

Pr[MEGA GOOD] = 1− Pr[MEGA BAD]

Pr[MEGA BAD] ≤ (1− 1

n2
)n2

=
1

e

(by independence)

[[Run n2 log n times to get w.h.p.]]

Question: Running time?

• n loops

• n time per loop

• run alg n2 log n times

so O(n4 log n).

Improving Running Time

Recall Algorithm: Use LP-duality: min-s-
t-cut equals max-s-t-flow, check all pairs of
vertices.

Question: Running time?

• one max-flow: O(mn log(n2/m))

• naive implementation:
O(mn3 log(n2/m))

• better, can use just (n − 1) flows:
O(mn2 log(n2/m))

2

• better yet, one max flow suffices:
O(mn log(n2/m))

Note: Max flow yields min cut, but not clear
how to go the other way.

Question: Can we solve min-s-t-cut faster
than max-s-t-flow?

Don’t know, but dropping s-t requirement,

Claim: Careful modification of global min-
cut runs in time O(n2 logO(1) n), much faster
than max flow for dense graphs.

Idea: Alg unlikely to mess up at the begin-
ning:

• Pr[¬E1] ≤ 2/n

so repeating first step n2 times is wasteful!

Claim: Suppose terminate alg when t ver-
tices remain (as opposed to 2). Then min-cut
survives with prob. ≥(

t

2

)
/

(
n

2

)
= Ω((t/n)2)

[[Just modify previous calculation.]]

Idea: Contract until t vertices remain, then
use deterministic alg.
Problem: Deterministic alg complicated
and too slow.

Idea: Use two invocations of randomized alg!

Algorithm: FastCut(G(V, E))

• n← |V |

• if n ≤ 6, compute min-cut of G by brute-
force

• else

– t← d(1 + n/
√

2)e

– perform two independent
contraction-sequences to get
two graphs H1 and H2 with t
vertices each

– recursively compute min-cuts in H1

and H2

– return smaller cut

Intuition: binary computation tree.

Draw tree, root is G, for node H children are
H1 and H2.

Question: How many levels? about 2 log n

Question: How many leaves? about n2

Note computation tree of simple alg is
like a star with n2 leaves; hence speedup
not from solving fewer problems, but from
sharing work.




Claim: Alg runs in time O(n2 log n). Proof:
Recurrence is:

T (n) = 2T (d(1 + n/
√

2)e) + O(n2)

and soln is as above.

Claim: Alg is correct with probability
Ω(1/ log n).[[

Hence can repeat log n times to get con-
stant probability of success at expense of
factor log n in running time.

]]
Proof: Suppose min-cut of G has size k.

Recursive call on H returns correct answer if

• cut of size k survives to H1 (or H2)

• AND recursive call on H1 (or H2) is cor-
rect

Question: What’s prob. cut survives to H1?

d(1 + t/
√

2)e2/t2 ≥ 1/2

by claim.

3

Let P (t) denote prob. alg succeeds for graph
with t vertices:

P (t) ≥ 1− (1− 1

2
P (d(1 + t/

√
2)e))2

Change of variables: Let k = Θ(log t) be
depth of recursion, p(k) be lower-bound on
success prob.

• p(0) = 1

• p(k + 1) = p(k)− p(k)2/4 (subbing in to
above eqn)

Further change of variables: q(k) = 4/p(k)−1
or p(k) = 4/(q(k) + 1)

q(k + 1) = q(k) + 1 +
1

q(k)

Soln (prove by induction):

k < q(k) < k + Hk−1 + 3

where Hi is i’th harmonic number.

Therefore:

q(k) = k+Θ(log k)→ p(k) = Θ(1/k)→ P (t) = Θ(1/ log t)

and results follows using t = n.[[
Like branching processes, trying to see
prob. min-cut dies out in this birth pro-
cess.

]]

4

