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Abstract. In many decentralized labor markets, job candidates are of-
fered positions at very early stages in the hiring process. It has been
argued that these early offers are an effect of the competition between
employers for the best candidate. This work studies the timing of offers in
a theoretical model based on the classical secretary problem. We consider
a secretary problem with multiple employers and study the equilibria of
the induced game. Our results confirm the observation of early offers in
labor markets: for several classes of strategies based on optimal stopping
theory, as the number of employers grows, the timing of the earliest offer
decreases.

1 Introduction

An essential feature of many modern markets, particularly networked markets, is
that they are online: information about agents, goods, and outcomes is revealed
over time, and the agents must make irrevocable decisions before all of the
information is revealed. A powerful tool for analyzing such scenarios is optimal

stopping theory, the theory of problems which require optimizing an objective
function over the space of stopping rules for a stochastic process. By combining
optimal stopping theory with game theory, we can model the actions of rational
agents applying competing stopping rules in an online market.

Perhaps the best-known optimal stopping problem is the secretary problem,
also known as the best-choice problem or marriage problem. This problem was
introduced in the 1960’s as a model for studying online selection processes in the
presence of a randomly ordered input. In the most basic version of the secretary
problem, a decision-maker observes a sequence of elements of a totally-ordered
set, presented in random order. At any time the decision-maker may stop the
sequence and select the most recently presented element, with the objective of
maximizing the probability of selecting the minimum element of the entire set.
Dynkin [1] determined the optimal stopping rule for this problem and proved
that its probability of success approaches 1/e as the size of the set tends to
infinity. A myriad of subsequent papers have extended the problem by varying
the objective function, varying the information available to the decision-maker,
allowing for multiple choices, and so on, e.g. [2–4].
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Another line of work (see [5] for a survey) extends the secretary problem by
studying scenarios in which two players compete to select the minimum element
of a randomly-ordered sequence. If the original secretary problem can be thought
of as the decision problem faced by an employer interviewing candidates for a
job, then this variant should be thought of as the strategic problem faced by
two employers interviewing the same sequence of candidates, when only one of
them can hire the best candidate. Papers in this area differ in their assumptions
about the game’s payoff structure and about the ways in which conflicts (both
players making an offer at the same time) are resolved. For example, Dynkin [6]
proves a minimax theorem and characterizes the game value for a zero-sum
version of the game in which conflicts are avoided by stipulating that in each
step of the game, only one player is allowed to make an offer. Szajowski studies
zero-sum stopping games with a tie-breaking rule which always gives priority
to Player 1 [7] or which gives priority to a player chosen by a (possibly biased)
random lottery [8]. A non-zero-sum version of the two-player game with unbiased
random tie-breaking was studied by Fushimi [9], who observed that although the
game is symmetric, the only pure Nash equilibria are asymmetric. Non-zero-sum
stopping games in which Player 1 always receives priority [10, 11] or in which
priority is granted by a (possibly biased) random lottery [12] have also been
studied. As far as we are aware, all of the prior work studies equilibria of the
resulting games when just two employers compete.

In this paper, we first present our own variant of the two-employer game,
providing a new derivation of the resulting symmetric two-player mixed-Nash
equilibrium, and then proceed to study k-employer extensions of our game. One
of the properties of any strategy for the employer game is its threshold time,
defined as the largest fraction τ such that the strategy is guaranteed not to make
an offer to any of the first τ candidates, no matter what the player observes nor
what the other players do. We show that in any pure Nash equilibrium of the
k-employer game, at least one of the players has a threshold time τ ≤ 2/k.
This fact follows from a theorem which generalizes a striking feature of the one-
player secretary problem: in any pure Nash equilibrium, the player with the
earliest threshold time r1 has probability exactly r1 of winning the game. (In
the one-player case, this specializes to the familiar fact that 1/e is both the
probability of winning and the optimal threshold value.)

Next we consider a more realistic version of the game, in which the players are
allowed to use adaptive strategies which base their decisions on the opponent’s
past actions as well as the public information revealed thus far. This defines a
multi-player stochastic game. We describe the unique subgame perfect mixed
Nash equilibrium of this game as the solution of a dynamic program. Using
properties of the dynamic program, we prove that the timing of the first offer
converges to zero as the number of players tends to infinity. More precisely, every
player’s threshold time is at most 1/k.

In many labor markets, competition between employers often leads to an
“unraveling” effect: employers wishing to attract the best candidates make early
offers with short expirations. Such effects are quite pronounced in many markets.



In the market for law clerks, offers are made to candidates as early as the second
year of law school, a full two years before graduations [13]. For a survey of
markets which exhibit unraveling effects, see [14]. Our results can be interpreted
as a theoretical justification for these unraveling effects. Namely, as the number
of employers grows, our results confirm that the timing of the earliest offer in an
equilibrium decreases.

2 Preliminaries

In this section we define a discrete-time and a continuous-time version of the
game. The discrete-time version is conceptually simpler whereas the continuous-
time version is more analytically tractable.

In the discrete-time game, we are given a totally-ordered set U = {x1 ≺ x2 ≺
. . . ≺ xn}, (representing the secretaries in decreasing order of value) and a set of
k ≥ 1 players (representing the employers). A random bijection Z : U → [n] is
chosen (representing the order in which the secretaries will be interviewed), but
Z is not initially revealed to the players. (Here and throughout this paper, when
m is a natural number we use [m] to denote the set {1, 2, . . . , m}.) As the game
proceeds, each player is in a state which is either active or inactive; all players
are initially active. At time t = 1, 2, . . . , n, the relative ordering of the elements
Z−1(1), Z−1(2), . . . , Z−1(t) is revealed to the players. Each active player then
chooses an action from the set {O, P}, whose elements are referred to as “offer”
and “pass”, respectively. If one or more active players chooses to offer, then one
of these players (chosen uniformly at random) receives the element x = Z−1(t)
and becomes inactive; this player is denoted by χ(x). The others remain active.
If all active players choose to pass at time t, then all of them remain active and
no player receives x. Each player is informed of the actions of all other players
and of the identity of player χ(x), if defined. At the end of the game, all players
receive a payoff of 0 except for χ(x1) (if defined) who receives a payoff of 1.

The continuous-time variant of the game intuitively captures the limit of
the discrete game as n tends to infinity. In most of this paper, we work on the
continuous model, as this model hides details like integrality in our computations,
hence making the computations cleaner, while still capturing the main ideas. It
is not hard to generalize our results in the continuous model to the discrete
model by incurring an additive error of o(1); the details of this generalization is
omitted from this extended abstract.

We now give an informal definition of the continuous-time model. The rigor-
ous definition requires technical details and is deferred to the full version of the
paper. In the continuous-time game, U = N and ≺ denotes the usual ordering
of N (hence the best element x1 is 1). Each element x has an arrival time Z(x)
picked independently and uniformly at random from [0, 1]. Each player i has a
(possibly randomized) strategy Si, which at any time t ∈ [0, 1] specifies whether
or not player i makes an offer to the element arriving at time t (if any).3 In

3 Note that we can ignore zero-probability events such as the arrival of two elements
at the exact same time.



general, Si(t) can depend on all the information revealed before time t (i.e., the
ordering of the elements that have arrived by time t, and the offer/pass deci-
sions made by other players before time t). We call such strategies adaptive. A
simpler class of strategies, which correspond to stopping rules, are non-adaptive

strategies and are defined as follows. For each r ∈ [0, 1], the non-adaptive strat-

egy with threshold time r is the strategy which makes an offer to every element
observed after time r which outranks the best element arriving before time r,
until it receives one of these elements and passes on all subsequent ones.

3 Analysis of non-adaptive strategies

3.1 Two players

We begin our discussion with a warmup involving the computation of equilibria
in the two-player game. We will work in the continuous-time model with U = N.

Pure Strategies Our first calculation characterizes the set of pure strategy
Nash equilibria. Our analysis is quite similar to that of Fushimi [9]. The difference
in the results stems from the fact that our process continues until time t =
n unless both players make successful offers, whereas in Fushimi’s model the
process stops if both employers make an offer to a single element simultaneously.

Assume that players 1 and 2 use the non-adaptive pure strategies r, s, re-
spectively. Let Y denote the following random subset of U :

Y = {y ∈ U |Z(y) < Z(x1)},

and let y1 ≺ y2 denote the two minimum elements of Y . We can then compute
the resulting expected payoff to player 2 as follows.

Case 1 (s > r): Then player 2 wins if either

1. Player 1’s earlier threshold caused him to make a sub-optimal offer, and
player 2 made an offer to the best element: Z(x1) > s and r < Z(y1) ≤ s.

2. Both players made an offer to the best element, and player 2 won the coin
toss: Z(x1) > s and Z(y1) ≤ r and χ(x1) = 2.

3. Both players made offers to the same sub-optimal element, but player 2
lost the coin toss and then proceeded to make an offer to the best element:
Z(x1) > s and Z(y1) > s and Z(y2) ≤ r and χ(y1) = 1.

Conditioned on the arrival time t = Z(x1) of the best element, the random
variables Z(y1), Z(y2) are independently uniformly distributed in [0, t]. There-

fore the probabilities of the three events listed above are respectively
∫ 1

s
s−r

t dt,
1
2

∫ 1

s
r
t dt, and 1

2

∫ 1

s

(

t−s
t

) (

r
t

)

dt, and their sum integrates to s ln
(

1
s

)

− r(1−s)
2 .

Case 2 (s ≤ r): Then player 2 wins if either

1. The best element arrives between the two thresholds and player 2 makes an
offer: s < Z(x1) ≤ r and Z(y1) ≤ s.



2. Both players make an offer to the best element, and player 2 wins the coin
toss: Z(x1) > r and Z(y1) ≤ s and χ(x1) = 2.

3. Both players made offers to the same sub-optimal element, but player 2
lost the coin toss and then proceeded to make an offer to the best element:
Z(x1) > r and Z(y1) > r and Z(y2) ≤ s and χ(y1) = 1.

The probabilities of the three events listed above are respectively
∫ r

s
s
t dt, 1

2

∫ 1

r
s
t dt,

and 1
2

∫ 1

r

(

t−r
t

) (

s
t

)

dt, and their sum integrates to s ln
(

1
s

)

− s(1−r)
2 .

Hence, when players 1 and 2 play the pure strategies r, s, respectively, the
expected payoff to player 2 is

f(s) =

{

s ln(1/s) − s(1 − r)/2 if s ≤ r
s ln(1/s) − r(1 − s)/2 if s ≥ r

(1)

and the derivative of the expected payoff is

f ′(s) =

{

ln(1/s)− 3/2 + r/2 if s < r
ln(1/s)− 1 + r/2 if s > r

(2)

Let s−(r), s+(r) denote the best responses to r in the intervals [0, r] and [r, 1],
respectively. It follows from (2) that

s−(r) =

{

er/2−3/2 if ln(1/r) − 3/2 + r/2 < 0
r otherwise

(3)

s+(r) =

{

er/2−1 if ln(1/r) − 1 + r/2 > 0
r otherwise

(4)

By symmetry, player 1’s best response function is identical. It follows easily from
(3) and (4) that there is a pure Nash equilibrium (r, s) where r = 0.27557...
satisfies 2 ln(r) + 3 = exp

(

r
2 − 1

)

and s = 0.42222... satisfies 2 ln(s) + 2 =

exp
(

s
2 − 3

2

)

. In fact, (3) and (4) imply that the only two pure Nash equilibria
are (r, s) and (s, r).

Mixed Strategies The two-player game with non-adaptive strategies also has
a symmetric mixed Nash equilibrium which we may compute explicitly. If player
1’s choice of r is a random variable with density function ν(r) then we find, using
(1), that player 2’s expected payoff from playing strategy s is:

f(s) =

∫ s

0

[

s ln

(

1

s

)

− s(1 − r)

2

]

ν(r) dr +

∫ 1

s

[

s ln

(

1

s

)

− r(1 − s)

2

]

ν(r) dr,

and from (2) we obtain:

f ′(s) = ln

(

1

s

)

− 1 + E

(r

2

)

− 1

2
Pr(r ≥ s). (5)



Let us assume that s has positive probability density in an interval (s0, s1) and
zero probability of lying outside [s0, s1]. Then every s ∈ [s0, s1] is a best response
to player 1’s mixed strategy, so f ′(s) = 0 for s ∈ [s0, s1]. Since we are assuming
a symmetric mixed Nash equilibrium, r also has zero probability of lying outside
[s0, s1], i.e. Pr(r ≥ s0) = 1, Pr(r ≥ s1) = 0. This implies, using (5) and the fact
that f ′(s) = 0 for s ∈ [s0, s1], that:

ln(1/s0) − 3/2 + E(r/2) = 0

ln(1/s1) − 1 + E(r/2) = 0

ln(1/s0) − ln(1/s1) = 1/2

s1 =
√

e · s0.

Taking the derivative of (5) we obtain:

f ′′(s) = −1

s
+

1

2
ν(s) = 0 for s ∈ [s0, s1],

which implies ν(s) = 2/s for s ∈ [s0, s1]. Hence

E(r/2) = E(s/2) =

∫ s1

s0

(s/2) ν(s) ds =

∫ s1

s0

ds = s1 − s0 = (
√

e − 1)s0.

Recalling that ln(1/s0)−3/2+E(r/2) = 0, we find that s0 satisfies the equation

(
√

e − 1)s0 = 3/2 + ln(s0),

i.e. s0 = 0.265..., s1 = 0.437.... Finally, we must verify that this is indeed a
mixed Nash equilibrium by checking that the expected payoff function f(s) is
maximized when s ∈ [s0, s1]. To do so, it suffices to prove that f ′(s) > 0 when
s < s0 and that f ′(s) < 0 when s > s1:

s < s0 f ′(s) = ln(1/s) − 3/2 + E(r/2) > ln(1/s0) − 3/2 + E(r/2) = 0,

s > s1 f ′(s) = ln(1/s) − 1 + E(r/2) < ln(1/s1) − 1 + E(r/2) = 0.

3.2 Multiple players

In the previous section we saw that the two-player game has a pure Nash equi-
librium (r, s) = (0.27557..., 0.42222...). One striking feature of this equilibrium
is that player 1’s probability of winning is

f(r) = r ln(1/r) − r(1 − s)/2 = 0.27557...

which is exactly equal to r. Recall that for the one-player game (i.e. the original
secretary problem) the optimal strategy sets its threshold at time 1/e and has
probability 1/e of winning. We begin this section with a theorem which shows
that it is not coincidental that player 1’s optimal threshold time and her proba-
bility of winning are exactly equal in both the one-player and two-player games.
This phenomenon holds for every pure Nash equilibrium of the k-player game,
for every k.



Theorem 1. If (r1, . . . , rk) is a pure Nash equilibrium of the k-player non-

adaptive game and r1 ≤ r2 ≤ . . . ≤ rk, then Pr(player 1 wins) = r1.

Proof. Fix the values of r2, r3, . . . , rk and let f(r) denote the probability that
player 1 wins when the players use strategies (r, r2, r3, . . . , rk). We will prove that
there is a constant C, depending only on r2, . . . , rk, such that f(r) = r ln(1/r)+
Cr when r ∈ (0, r2]. Since r1 = arg max f(r) and r1 ∈ (0, r2] we have

0 = f ′(r1) = ln(1/r1) − 1 + C =
f(r1)

r1
− 1,

from which we conclude that f(r1) = r1 as claimed.
It remains to prove that f(r) = r ln(1/r) + Cr when r ∈ (0, r2]. The proba-

bility that player 1 wins before time r2 is

∫ r2

r

r

t
dt = r ln(1/r) − r ln(1/r2).

To compute the probability that player 1 wins after time r2, let Y = {y ∈
U |Z(y) < Z(x1)}, and let y1 ≺ y2 ≺ y3 ≺ . . . be the elements of Y in sorted
order. Note that, conditional on Z(x1) = t, the random variables {Z(y)}y∈Y are
independent and uniformly distributed in [0, t). Let A = min{a |Z(ya) ≤ r}, and
let ua = Z(ya) for a = 1, 2, . . . , A. If player 1 wins after time r2 then it must be
the case that Z(ya) > r2 for a < A. Let

g(u1, u2, . . . , uA) = Pr(χ(x1) = 1 ‖ r, r2, . . . , rk, u1, u2, . . . , uA).

Note that the value of g depends only on the relative ordering of the numbers
in the set S = {r, r2, . . . , rk , u1, u2, . . . , uA}. In particular, g is constant as uA

varies over the range [0, r] because uA, r are always the two smallest numbers in
S. Now, letting E denote the event that player 1 wins after time r2,

Pr(E) =

∞
∑

a=1

Pr((A = a) ∧ E)

=

∞
∑

a=1

∫ 1

r2

[
∫ r

0

(
∫ 1

r2

· · ·
∫ 1

r2

g(u1, . . . , ua)t−a du1 . . . dua−1

)

dua

]

dt

= r

∞
∑

a=1

∫ 1

r2

[
∫ 1

r2

· · ·
∫ 1

r2

g(u1, . . . , ua−1, 0)t−adu1 . . . dua−1

]

dt

= C ′r,

where C ′ denotes the sum on the penultimate line of the equation above. Thus
f(r) = r ln(1/r) + Cr, with C = C ′ − ln(1/r2).

Lemma 1. In any pure Nash equilibrium of the k-player non-adaptive game,

no player receives an expected payoff which is more than twice another player’s

expected payoff.



Proof. Let pi denote the expected payoff of player i. If pj > 2pi, then player i can
deviate from the equilibrium by playing rj instead of ri. We will prove that this
deviation yields an expected payoff of at least pj/2 for player i, contradicting
the assumption that r1, . . . , rk is a Nash equilibrium.

To prove that player i achieves an expected payoff of at least pj/2 by changing
her strategy to rj , note first that players i and j have equal expected payoffs
when they both play rj . Now consider the change in player j’s expected payoff
in a series of two steps. First, player i changes her strategy from ri to 1. (This is
equivalent to player i leaving the game, since a player with a threshold time of 1
never makes an offer.) This change not decrease pj . Second, player i changes her
strategy from 1 to rj . For every time t ≥ rj , this increases the number of active
players at time t by at most one, so it decreases Pr(player j wins at time t) by
at most a factor of 2. Thus, player j’s expected payoff after this second change
is at least pj/2. This is equal to player i’s expected payoff when she deviates by
playing rj , which concludes the proof of the lemma.

The following corollary confirms the observation of early offers in labor mar-
kets: it shows that in any pure Nash equilibrium of the k-player game, the earliest
threshold time is O(2/k). (An easy consequence of this is that the timing of the
first offer converges to zero almost surely as k → ∞.)

Corollary 1. In any pure Nash equilibrium of the k-players non-adaptive game,

if the players are numbered in order of increasing threshold times r1 ≤ r2 ≤ . . . ≤
rk, then r1 ≤ 2/k.

Proof. As before, let pi denote the expected payoff of player i, for i = 1, 2, . . . , k.
Note that

∑

i pi ≤ 1 since the combined payoff of all players is at most 1. By
Lemma 1 we have pi ≥ p1/2 for all i. Hence kp1/2 ≤ ∑

i pi ≤ 1 which implies
that p1 ≤ 2/k. By Theorem 1 we have r1 = p1, hence r1 ≤ 2/k.

4 Adaptive strategies

When players are allowed to use adaptive strategies, it will be more convenient to
adopt the discrete-time model of the game. This can be described as a stochastic
game with state space [n]× [k]. The interpretation of state (t, j) for t ≤ n is that
there are j players active at time t, and an element x arrives at time t which is
the best element observed so far. (More formally, there is an element x ∈ U with
Z(x) = t such that x ≺ y for all y with Z(y) < t.)

Proposition 1. The adaptive k-player game has a unique symmetric subgame

perfect equilibrium. This equilibrium can be described as follows: for each state

(t, j) ∈ [n] × [k], there exist numbers p(t, j), q(t, j) such that the equilibrium

strategy of an active player in state (t, j) is to play O with probability p(t, j),
P with probability q(t, j), regardless of the prior history of the game. Let v(t, j)
denote the probability that player i wins, given that the game is currently in

state (t, j) and i is active. Then the values of p(t, j), q(t, j), v(t, j) are correctly

computed by the algorithm in Figure 1.



/* Initialization */
for t = 1, 2, . . . , n

v(t, 0)← 0; w(t, 0)← 0
end

for j = 1, . . . , k
p(n, j)← 1; q(n, j)← 0; w(n, j)← 0; v(n, j)← 1/j

end

/* Dynamic program */
for j = 1, 2, . . . , k

for t = n− 1, n − 2, . . . , 1
w(t, j)← w(t + 1, j) + v(t + 1, j)/(t2 + t)
A← w(t, j − 1)− 1/n
B ← w(t, j − 1)− w(t, j)
if 1/n ≥ w(t, j − 1) /* Pure strategy O is optimal */

q ← 0
else if 1/n ≤ w(t, j) /* Pure strategy P is optimal */

q ← 1
else /* Mixed strategy is optimal */

r← the unique solution of 1 + x + x2 + . . . + xj−1 = jB/A in the interval (1,∞)
q ← 1/r

p(t, j)← 1− q
q(t, j)← q
vO(t, j)← tw(t, j − 1)− t(A/j)(1 + q + . . . + qj−1)
vP(t, j)← tw(t, j − 1) − tBqj−1

v(t, j)← max{vO(t, j), vP(t, j)}
end /* for t = n− 1, n − 2, . . . , 1 */

end /* for j = 1, 2, . . . , k */

Fig. 1. Dynamic program to compute the symmetric subgame perfect equilibrium of
the adaptive game.

Proof. See Appendix A.

Although the algorithm in Figure 1 is elaborate and does not yield a closed-
form formula for the equilibrium strategy, it does enable us to draw some useful
qualitative conclusions about this equilibrium. For example, the following theo-
rem again confirms the observation of early offers in labor markets.

Theorem 2. In the adaptive game with k players, assume all players use the

symmetric equilibrium strategy described in Proposition 1. If there are j active

players at time t ≥ n/j and the element x which arrives at time t is the best

element observed so far, then all of the active players make an offer to this

element.

Proof. For all j ≥ 1 and all t ∈ [n], we have v(t, j) ≤ 1/j because each of the j
active players in state (t, j) has probability v(t, j) of winning, and these j events



are mutually exclusive. It follows that

w(t, j − 1) =
n

∑

u=t+1

v(u, j − 1)

u(u − 1)
≤ 1

j − 1

n
∑

u=t+1

1

u(u − 1)
=

1

j − 1

(

1

t
− 1

n

)

.

If t ≥ n/j then 1/t − 1/n ≤ (j − 1)/n, so w(t, j − 1) ≤ 1/n. According to the
algorithm in Figure 1, this implies that in equilibrium, all active players play O.
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A Proof of Proposition 1

We prove the claims in the proposition by induction on states, in the order
they are considered by the algorithm, i.e. downward induction on t and upward
induction on j. It will be helpful to maintain an additional induction hypothesis
that

w(t, j) =

n
∑

u=t+1

v(u, j)

u(u − 1)
,



where the right side is interpreted as 0 when t = n.
The base cases j = 0, t = 1, 2, . . . , n are trivial. (No players are active, so

there is no need to compute the equilibrium strategies, only the values of v(t, j)
and w(t, j).) The base cases t = n, j = 1, . . . , k are also trivial: if the n-th element
is the best one observed so far, there is no reason for any active player to play
P. All of them will play O, and each of them has probability 1/j of winning.

For the induction step, it is easy to check that w(t, j) satisfies the induc-
tion hypothesis given that w(t + 1, j) does. To verify the induction hypothesis
for v(t, j), p(t, j), q(t, j) requires an elaborate calculation which we now explain.
First let us define several events which will appear in the conditional probability
expressions that define the transition probabilities of the stochastic game.

E(t, j) = {the game visits state (t, j)}
EP(t, j) = E(t, j) ∩ {all players pass at time t}
EO(t, j) = E(t, j) ∩ {at least one player makes an offer at time t}

E((t, j) → (u, `)) = {the game makes a state transition from (t, j) to (u, `)}
E((t, j) → •) = {the game visits state (t, j) and Z−1(t) = x1.}

The following conditional probabilities can be calculated using arguments anal-
ogous to the calculations of transition probabilities for Markov decision process
representing the one-player secretary problem (e.g. [15]).

Pr(E((t, j) → •) ‖ EP(t, j)) = t/n

Pr(E((t, j) → •) ‖ EO(t, j)) = t/n

Pr(E((t, j) → (u, j)) ‖ EP(t, j)) = t/(u(u − 1))

Pr(E((t, j) → (u, j − 1)) ‖ EO(t, j)) = t/(u(u − 1)).

Using these conditional probabilities, we wish to calculate the expected payoff
to player i when playing O or P in state (t, j) given that the other players are all
playing O with probability p, P with probability q. Let us denote the expected
payoff to player i in these two cases by vO(t, j), vP(t, j), respectively. A simple
case analysis combined with the conditional probability formulas above yields:

vO(t, j) =

j
∑

i=1

(

j − 1

i − 1

)

pi−1qj−i

[

1

i
· t

n
+

(

1 − 1

i

) n
∑

u=t+1

tv(u, j − 1)

u(u − 1)

]

(6)

vP(t, j) = qj−1
n

∑

u=t+1

tv(u, j)

u(u − 1)
+

(

1 − qj−1
)

n
∑

u=t+1

tv(u, j − 1)

u(u − 1)
(7)

Let A = w(t, j − 1)− 1/n, B = w(t, j − 1)−w(t, j). We may simplify equations
(6) and (7) considerably, obtaining:

vO(t, j) = tw(t, j − 1) − (t/j)A
1 − qj

1 − q
(8)

vP(t, j) = tw(t, j − 1) − qj−1tB (9)

1

t
(vO(t, j) − vP(t, j)) = qj−1B − (A/j)

1 − qj

1 − q
. (10)



From (10) we see that the set of best responses for player i is {O}, {P}, or
{O, P} according to whether the value of the function f(q) = qj−1B− (A/j)(1+
q + . . . + qj−1) is positive, negative, or zero.

When j = 1 this computation derives the optimal policy for the ordinary
(one-player) secretary problem. We have A = −1/n, B = −w(t, 1), f(q) =
B − A = 1/n − w(t, 1). Let t1 be the largest value of t such that w(t, 1) > 1/n.
For all t > t1, f(q) > 0 and the unique best strategy in state (t, 1) is O; moreover

for t > t1 we have v(t, 1) = t/n and w(t, 1) = 1
n

∑n−1
u=t

1
u . From this formula for

w(t, 1) we deduce that t1 ∼ n/e.
When j > 1 and t < n, let us first observe that B > 0. To see this, note

that B =
∑n

u=t+1(v(u, j − 1) − v(u, j))/(u(u − 1)), that each term of this sum
is non-negative because increasing the number of active players at time t can
not increase player i’s probability of winning after time t, and that the final
term is strictly positive. If A ≤ 0 then f(q) > 0 for all q, which implies that O

is the unique best response for player i and therefore (since we are assuming a
symmetric equilibrium) q = Pr(i plays P) = 0. Conversely, if q = 0 then O is in
player i’s best response set, which implies that f(q) = f(0) ≥ 0 and therefore
A ≤ 0. Recalling that A = w(t, j − 1) − 1/n, we have derived:

q = 0 ⇐⇒ w(t, j − 1) ≤ 1/n. (11)

Now we come to the case q > 0. We know that in this case, A > 0. Note that
f(q) has the same sign as q1−jf(q) and that

q1−jf(q) = B − (A/j)(1 + q−1 + . . . + q−(j−1)). (12)

Letting r = 1/q, the right side of (12) is the polynomial g(r) = B − (A/j)(1 +
r + . . . + rj−1) which is monotonically decreasing as a function of r ≥ 1 because
A > 0. If g(1) = B − A ≤ 0 and q < 1, then r > 1 and g(r) < 0, which
implies that player i’s unique best response is P contradicting the fact that
q < 1 and that we are in a symmetric equilibrium. Hence we see that B −A ≤ 0
implies q = 1. Conversely, if q = 1 then P is in player i’s best response set and
f(1) = g(1) = B−A ≤ 0. Recalling that B−A = 1/n−w(t, j), we have derived:

q = 1 ⇐⇒ 1/n ≤ w(t, j). (13)

Finally, if 0 < q < 1, then player i’s best response set is {O, P} which implies
that g(r) = 0, i.e. 1+r + . . .+rj−1 = jB/A. Since g is monotonic in the interval
(1,∞), the equation g(r) = 0 can have at most one solution in this interval. In
fact there is a solution in this interval by the intermediate value theorem, since
g(1) = B − A > 0 (by our assumption that q < 1) and g(r) tends to −∞ as
r → ∞ (by our assumption that A > 0, as follows from the fact that q > 0).

This concludes the verification that there is a unique symmetric mixed Nash
equilibrium in state (t, j), and that the algorithm correctly computes this equi-
librium. The verification that the algorithm correctly computes v(t, j) — which
is the final part of establishing the induction step — is a trivial consequence of
formulas (8) and (9) above.


